
Model Driven Development for Kuksa
Applications Documentation

Release 0.0.1

Pedro Cuadra

Mar 20, 2018

Contents

1 Introduction and Goals 5
1.1 Requirements Overview . 5
1.2 Quality Requirements . 5

2 Constraints 7
2.1 Technical Constraints . 7
2.2 Conventions . 7

3 System Scope and Context 9

4 Solution Strategy 11

5 Building Block View 13
5.1 Service Class . 16
5.2 WebSocketApi . 17
5.3 APP Class . 20
5.4 AGL Service . 20
5.5 RAML Parser . 21
5.6 raml2agl main . 21

6 Runtime View 25
6.1 RAML2AGL Generation . 25
6.2 AGL Service Start . 25
6.3 Web Socket Communication . 25

7 Deployment View 31

8 Cross-cutting Concepts 33
8.1 RPC over Web Socket . 33

9 Design Decisions 35
9.1 RESTful Modeling Language Selection . 35
9.2 Python for raml2agl . 35
9.3 RAML Parser vs pyraml-parser/ramlifications . 35
9.4 RPC over Web Socket Communication . 36

10 Quality Requirements 37

i

11 Risks and Technical Debts 39
11.1 PyRAML/ramlifications Adoption . 39
11.2 RPC Limitations . 39

12 Glossary 41

Bibliography 43

ii

List of Figures

3.1 MDD Approach Context . 9

5.1 Web Socket Communication Component Diagram . 14
5.2 RAML2AGL Block Diagram . 15
5.3 Generated Example . 17
5.4 Web Socket API Class Diagram . 18
5.5 AGL Application Framework API [29] . 20
5.6 RAML Parser Block Diagram . 22
5.7 RAML2AGL main Block Diagram . 23

6.1 RAML2AGL Generation . 26
6.2 AGL Service Start . 27
6.3 Web Socket Communication . 28
6.4 Web Socket Communication . 29

7.1 Deployment Diagram of RAML2AGL Root . 31
7.2 Deployment Diagram of RAML2AGL Root (With Templates) . 32
7.3 Deployment Diagram of RAML2AGL Root (Runtime) . 32

8.1 RPC Model . 33
8.2 Web Socket Model . 34

1

Model Driven Development for Kuksa Applications Documentation, Release 0.0.1

2 List of Figures

List of Tables

2.1 Technical Constraints Table . 7
2.2 Organizational Constraints Table . 7

5.1 Top Block Components Responsibilities . 13
5.2 RAML2AGL Components Responsibilities . 16
5.3 RAML2 Parser Sub-components Responsibilities . 21
5.4 RAML2AGL main Sub-components Responsibilities . 21

3

Model Driven Development for Kuksa Applications Documentation, Release 0.0.1

4 List of Tables

CHAPTER 1

Introduction and Goals

AGL (Automotive Grade Linux) provides many development interfaces. For instance, HTML5, JavaScript, and C/C++
applications can be developed to run on top AGL. However, development methodologies aren’t explicitly mentioned
from AGL’s development team.

1.1 Requirements Overview

This documentation presents an MDD (Model Drive Development) methodology to simplify and abstract the devel-
opment process.

1.2 Quality Requirements

Below, the quality requirements are presented.

Requirement: Transparency REQ_001

links incoming: None
links outgoing: None

The MDD methodology shall show a clear mapping between the components from involved layers.

Requirement: Abstraction REQ_002

links incoming: None
links outgoing: None

The MDD methodology shall provide a simplified abstract of the concepts in the underlying layers; e.g. Appli-
cation Framework.

Requirement: Standardization REQ_003

links incoming: None
links outgoing: None

5

Model Driven Development for Kuksa Applications Documentation, Release 0.0.1

The developed solutions for the MDD methodology, shall use standard and predefined processes, methodolo-
gies, tools, and interfaces to facilitate their adoption.

Requirement: Flexibility REQ_004

links incoming: None
links outgoing: None

The MDD methodology should provide customization mechanisms.

Requirement: Testability and Debugability REQ_005

links incoming: None
links outgoing: None

The MDD methodology should provide mechanisms for testing and debug all main components.

6 Chapter 1. Introduction and Goals

CHAPTER 2

Constraints

2.1 Technical Constraints

The technical constraints are shown in Table 2.1.

Table 2.1: Technical Constraints Table
ID Constraint Description
Software and programming constraints
TC1 Programming Lan-

guage
There’s no explicit constraint regarding the programming language to be
used.

Operating system constraints
TC2 AGL distribution The developed MDD methodology shall apply for developing for AGL Linux

Distribution
Hardware Constraints
TC3 Memory friendly The applications developed with the MDD approach shall consider good

memory management practices.

2.2 Conventions

Finally, conventions used by this project are shown in Table 2.2.

Table 2.2: Organizational Constraints Table
ID Constraint Description
C1 Documentation The documentation is written using the arc42 document structure and using

Sphinx.
C2 Coding conventions For C/C++ and Python (used for the MDD) development the coding styles

used were the Linux Kernel coding style [8] and PEP8 [11], respectively.

7

Model Driven Development for Kuksa Applications Documentation, Release 0.0.1

8 Chapter 2. Constraints

CHAPTER 3

System Scope and Context

The work presented in this document proposed a Proof-of-Concept of an MDD Approach. The approach is focused on
showing a possible workflow to develop AGL applications and services. Fig. 3.1 shows the context diagram of such an
approach. Note that the proposed solution should consider AGL components in order to provide a smooth integration
with the AGL Linux Distribution.

Fig. 3.1: MDD Approach Context

9

Model Driven Development for Kuksa Applications Documentation, Release 0.0.1

10 Chapter 3. System Scope and Context

CHAPTER 4

Solution Strategy

The MDD approach developed is focused on developing applications to run on top of AGL. The AGL architecture
specifies different layers of abstraction and the MDD workflows shall be compliant with this architecture. Therefore,
the MDD process presented in this work focuses on the development of AGL Services that use AGL’s Applications
Framework APIs.

AGL services expose functionality to all the applications that might run on top [32]. To be more specific AGL services
are implemented as systemd user-defined services in AGL. The way they expose the functionality is exposing a
RESTfull API through a Web Sockets (or dbus). Meaning that in order to access functionality exposed by an AGL
service, the application has to open a Web Socket use the RESTfull API.

The MDD approach presented in this document focuses in defining a model of the RESTfull API. The model is then
used as an input for automatically generate the communication components of both the AGL service and the AGL
application.

For modeling the RESTfull API, RAML (RESTfull API) was used. RAML is a recently developed community
standard that has already been widely adopted in other projects like; API Workbench and API Designer [17]. It’s a
markup language based in YAML, which makes it both; machine readable and human readable.

raml2agl is written in Python (Python 3), which makes it really fast to develop and portable. Although Python has
already two reference implementations of a RAML parser called pyraml-parser [13] and ramlifications
(developed by Spotify) [36], they were not used for developing raml2agl since they only support RAML 0.8 and
raml2agl plans to support RAML 1.0. Therefore, a custom RAML 1.0 parser was designed and implemented.
ramlifications plans to support RAML 1.0 in the future. [36] Therefore, raml2agl could adopt it in the
future.

Another reason to use Python to write raml2agl is the variety of already implemented components. Especially the
support for Jinja2 templating language was of high importance here. Jinja2 is a very powerful and complete templating
language with bindings for Python. [35] The code generation was implemented using Jinja2 templates, which makes
the code generation highly flexible and fast to develop.

The final outcome of the automatic code generation is a set of C++ classes that implement the entire RESTfull API
communication. Moreover, simple C++ classes methods abstract the complex Web Socket handling and RESTfull API
message marshaling and unmarshaling. This approach can be compared with other projects like Google’s protobuffer
[25] that aims to automatically generate the communication components.

11

Model Driven Development for Kuksa Applications Documentation, Release 0.0.1

12 Chapter 4. Solution Strategy

CHAPTER 5

Building Block View

To understand where the proposed MDD approach has its importance, the components involved in the Unix Web
Socket communication have to be presented. Fig. 5.1 presents these components.

Since the AGL Application Framework and its API are already given in the AGL architecture, the rationale behind
the design was to wrap the AGL Application Framework API and the Web Socket communication in an RPC-like
approach. Moreover, the components were encapsulated applying functional decomposition. Table 5.1 shows the
responsibilities for each of the components in Fig. 5.1.

Table 5.1: Top Block Components Responsibilities
Name Responsibility
AGL Application Framework Manage all AGL Services and their life cycle, Create Unix Web Socket for the

RESTfull API to be served by the AGL Services, Forward RESTfull API verb
calls to AGL Services verbs callbacks, Verbs authentication process handling.

AGL Service Initialize service resources, serve the RESTfull API, Forward the RESTfull API
verbs to the corresponding Service Class method, Unmarshal JSON messages as
to parse corresponding Service Class method parameters, Marshal output param-
eters of Service Class as JSON to reply through Unix Web Socket.

Service Class Implements the intended functionality at service side for each RESTfull API verb.
Application Use functionality exposed by the AGL Services to achieve a user-visible purpose.
APP Class Exposes all RESTfull API verbs as methods with input and output parameters,

Marshal parameters as JSON to send requests to the Unix Web Socket, Unmarshal
JSON replies to update output parameters.

WebSocketApi Handle Unix Web Socket connection, Form RESTfull API request, Wait for
RESTfull API replies.

raml2agl features an automatic code generation tool developed. Fig. 5.2 shows the building blocks of the tool and
its relations with the possible outputs.

As shown in Fig. 5.2, raml2agl generates code for the Service Class, App Class, and the AGL Service; the last
two are fully generated. Note that the automatically generated components are the ones with more responsibilities,
as shown in Table 5.1. This fact was also the rationale behind the definition of the components, to automate most

13

Model Driven Development for Kuksa Applications Documentation, Release 0.0.1

Fig. 5.1: Web Socket Communication Component Diagram

14 Chapter 5. Building Block View

Model Driven Development for Kuksa Applications Documentation, Release 0.0.1

Fig. 5.2: RAML2AGL Block Diagram

15

Model Driven Development for Kuksa Applications Documentation, Release 0.0.1

of the process and reduce the overhead of creating a new Service and/or Application. Moreover, Table 5.2 shows the
responsibilities of each of the raml2agl components.

Table 5.2: RAML2AGL Components Responsibilities
Name Responsibility
RAML Parser Read the RAML model and create a JSON model to be pass to the Jinja2 tem-

plates.
Jinja2 Environment Manage the templates, render the templates using the JSON model.
raml2agl main Read the RAML model from a file, Control the entire generation flow, reads input

command line parameters, Calls the RAML Parser to generate JSON model, Calls
the Jinja2 Environment to render the corresponding templates.

5.1 Service Class

Fig. 5.3 shows an example of the output of raml2agl using the following model;

#%RAML 1.0
title: Example
mediaType: application/json
version: v1
baseUri: localhost:8000/api?token=x
/method_1:

post:
body:

properties:
param_in_1:
type: integer

get:
responses:

200:
body:
properties:
param_out_1:
type: integer

/method_2:
post:
body:

properties:
param_in_1:
type: string

get:
responses:

200:
body:
properties:
param_out_1:
type: string

Note that Service Class isn’t fully automatic generated. Nevertheless, a skeleton of the entire class with all the methods
definition is generated. Is the task of the Service developer to finish the implementation of the functionality. Moreover,
each method represents a verb of the RESTfull API. Hence, /example/method_1 will shall be implemented in
ServiceExample.method_1(...). Furthermore, the model title is the parsed to name the RESTfull API and
both classes.

16 Chapter 5. Building Block View

Model Driven Development for Kuksa Applications Documentation, Release 0.0.1

Fig. 5.3: Generated Example

5.2 WebSocketApi

Fig. 5.4 class diagram shows the definition of the WebSocketApi class.

Moreover, below the description of each of the classes members.

class WebSocketApi
Handle Unix Web Socket connection and transmission

Public Functions

WebSocketApi(const char *uri, const char *api_name)
Constructor

Creates Unix Web Socket connection and initialize the wait loop

Parameters

• uri: Base uri to the web socket

• api_name: API name

~WebSocketApi()
Destructor

Releases the resources and disconnect from the Unix Web Socket

Protected Functions

json_object *emit(const char *verb, const char *object)
Send string to the specified API’s verb

5.2. WebSocketApi 17

Model Driven Development for Kuksa Applications Documentation, Release 0.0.1

Fig. 5.4: Web Socket API Class Diagram

Return Reply JSON object

Parameters

• verb: API’s verb

• object: Marshaled JSON object

Protected Attributes

bool connected
Flags connection status

Private Members

const char *uri
Base URI of the API

const char *api_name
API name

Private Static Functions

static void dec_callcount()
Decrement the reference count of calls

static void on_wsj1_hangup(void *closure, struct afb_wsj1 *wsj1)
Hang up callback

Parameters

• closure: Hangup’s closure

18 Chapter 5. Building Block View

Model Driven Development for Kuksa Applications Documentation, Release 0.0.1

• wsj1: Connection object

static void on_wsj1_call(void *closure, const char *api, const char *verb, struct
afb_wsj1_msg *msg)

Receives a method invocation callback

Parameters

• closure: Call’s closure

• api: API Name

• verb: API’s verb

• msg: Message to be sent

static void on_wsj1_event(void *closure, const char *event, struct afb_wsj1_msg *msg)
Receive an event callback

Parameters

• closure: Event’s closure

• event: Issued event

• msg: Received message

static void on_wsj1_reply(void *closure, struct afb_wsj1_msg *msg)
Receive a reply callback

Parameters

• closure: Reply’s closure

• msg: Replied message

static int wsj1_call(const char *api, const char *verb, const char *object)
Send a marshaled object to the specified API and API’s verb

Return Return POSIX error codes

Parameters

• api: API name

• verb: API’s verb

• object: Marshalled JSON object

Private Static Attributes

struct afb_wsj1_itf wsj1_itf
The Web Socket callback interface for wsj1

struct afb_wsj1 *wsj1
The Web Socket connection object

int exonrep
The Web Socket connection object

int callcount
Calls Reference counter

sd_event *loop
Wait loop event

5.2. WebSocketApi 19

Model Driven Development for Kuksa Applications Documentation, Release 0.0.1

bool reply
Flags the presens of a reply

json_object *curr_reply
Last received JSON object

5.3 APP Class

As shown in Fig. 5.3 the Example APP Class has symmetric methods with ServiceExample. Therefore, a call
to Example.method_1 will call /example/method_1 RESTfull API through the Unix Web Socket. Note
that every APP Class is completely automatically generated. Moreover, APP Class inherits WebSocketApi and
implements the entire Unix Web Socket communication its methods.

5.4 AGL Service

An AGL service is basically the implementation of the Application Framework API shown in Fig. 5.5.

Fig. 5.5: AGL Application Framework API [29]

Furthermore, to implement Fig. 5.3, for instance, a null-terminated list of verbs has to be defined as follows;

20 Chapter 5. Building Block View

Model Driven Development for Kuksa Applications Documentation, Release 0.0.1

static const struct afb_verb_v2 verbs[] = {
/*Without security*/
{.verb = "method_1", .callback = method_1, .auth = NULL, .info = "method_1", .

→˓session = 0},
{.verb = "method_2", .callback = method_2, .auth = NULL, .info = "method_2", .

→˓session = 0},
{.verb = NULL, .callback = NULL, .auth = NULL, .info = NULL, .session = 0 }

};

Note that for an initial implementation the authentication mechanisms weren’t implemented. Nevertheless, it has been
included in the raml2agl’s road map, see [22].

And finally, to register the entire API to the AGL Application Framework the afb_binding_v2 structure is auto-
matically generated as follows.

const struct afb_binding_v2 afbBindingV2 = {
.api = "example",
.specification = "",
.info = "Auto generated - Example",

.verbs = verbs,

.preinit = NULL,
.init = init,

.onevent = NULL,
.noconcurrency = 1

};

5.5 RAML Parser

Fig. 5.6 presents the internals of the RAML Parser component. Furthermore, the responsibilities of each of the sub-
components are stated in Table 5.3

Table 5.3: RAML2 Parser Sub-components Responsibilities
Name Responsibility
Root Attributes Parser Parse the RAML root attributes like; title and base URI.
Methods Parser Parse the RAML verbs as methods
Input Parameters Parser Parse the RAML verbs’ input parameters
Output Parameters Parser Parse the RAML verbs’ output parameters
Types Parser Parse the RAML verbs’ parameters’ types

5.6 raml2agl main

Fig. 5.7 presents the internals of the RAML2AGL main component. Furthermore, the responsibilities of each of the
sub-components are stated in Table 5.4

Table 5.4: RAML2AGL main Sub-components Responsibilities
Name Responsibility
Command Line Arguments
Parser

Parses the command line arguments to configure the File Generator.

Templates Filters Defines Jinja2 Template filters to convert data types from RAML format to C++.
Files Generator Passes the JSON model to render the templates to be built and write files to the

selected output location.

5.5. RAML Parser 21

Model Driven Development for Kuksa Applications Documentation, Release 0.0.1

Fig. 5.6: RAML Parser Block Diagram

22 Chapter 5. Building Block View

Model Driven Development for Kuksa Applications Documentation, Release 0.0.1

Fig. 5.7: RAML2AGL main Block Diagram

5.6. raml2agl main 23

Model Driven Development for Kuksa Applications Documentation, Release 0.0.1

24 Chapter 5. Building Block View

CHAPTER 6

Runtime View

6.1 RAML2AGL Generation

Fig. 6.1 presents the sequence of the raml2agl run for automatically generate APP Class, WebSocketApi, AGL
Service and Service Class.

6.2 AGL Service Start

It’s important to have some insight on how AGL Services are initialized and how the Unix Web Socket gets created.
Therefore, Fig. 6.2 shows this process.

6.3 Web Socket Communication

The Web Socket Communication can only happen after the AGL Service is already running, thus the Unix Web Socket
was already created and the RESTfull API is being served. Fig. 6.3 shows the sequence how the entire communication
takes place.

Note that the Application using the APP Class will have the entire Web Socket communication abstracted as simple
method calls. Hence, an RPC model is implemented on top of the RESTful API. Fig. 6.4 shows this abstracted
communication sequence.

25

Model Driven Development for Kuksa Applications Documentation, Release 0.0.1

Fig. 6.1: RAML2AGL Generation

26 Chapter 6. Runtime View

Model Driven Development for Kuksa Applications Documentation, Release 0.0.1

Fig. 6.2: AGL Service Start

6.3. Web Socket Communication 27

Model Driven Development for Kuksa Applications Documentation, Release 0.0.1

Fig. 6.3: Web Socket Communication

28 Chapter 6. Runtime View

Model Driven Development for Kuksa Applications Documentation, Release 0.0.1

Fig. 6.4: Web Socket Communication

6.3. Web Socket Communication 29

Model Driven Development for Kuksa Applications Documentation, Release 0.0.1

30 Chapter 6. Runtime View

CHAPTER 7

Deployment View

Fig. 7.1 and Fig. 7.2 show the structure of the raml2agl repository. Note that src/template/ directory holds all
the templates that feed the Jinja2 Environment to generate the components also shown in the corresponding diagram.

Fig. 7.1: Deployment Diagram of RAML2AGL Root

Moreover, the Application and Service source files are separately compiled and deployed at different abstraction layers
within the AGL architecture. Fig. 7.3

31

Model Driven Development for Kuksa Applications Documentation, Release 0.0.1

Fig. 7.2: Deployment Diagram of RAML2AGL Root (With Templates)

Fig. 7.3: Deployment Diagram of RAML2AGL Root (Runtime)

32 Chapter 7. Deployment View

CHAPTER 8

Cross-cutting Concepts

8.1 RPC over Web Socket

Since the raml2agl implements an RPC over a Web Socket, Fig. 8.1 shows a generic RPC and Fig. 8.2 shows a
generic Web Socket communication. Note that in order to communicate over Web Socket a connection between Client
and Server has to be acknowledged. Similarly, the connection has to be closed once it’s not going to be used anymore.
This part is handled in the WebSocketApi constructor and destructor, respectively. Moreover, the APP Class and the
AGL Service handle the messaging and thus simulating an RPC.

Fig. 8.1: RPC Model

33

Model Driven Development for Kuksa Applications Documentation, Release 0.0.1

Fig. 8.2: Web Socket Model

34 Chapter 8. Cross-cutting Concepts

CHAPTER 9

Design Decisions

9.1 RESTful Modeling Language Selection

There is a handful of Modeling Language that can be used for modeling RESTful APIs. The main criteria to select the
modeling language to be used was that it has to be machine- and human-readable format, filtering the possibilities to
those using JSON and YAML formats. Options like API Blueprint were filtered out because it’s written using Mark-
down which is more human-readable but much less machine-readable. In contrast, XML-based modeling languages
were also left out, because it is not a human-readable format.

The analysis was, therefore, focus on OpenAPI and RAML. Nevertheless, after analyzing their specifications [19] and
[18], RAML was considered to be equally descriptive and much less verbose.

9.2 Python for raml2agl

Python was selected to develop raml2agl, because of its simplicity. Also, there are many Python libraries that
make the development process faster and easier. For instance, Jinja2 makes the entire automatic code generation with
relatively less effort. Python YAML parsing library is also used for RAML parsing. Moreover, Python’s dictionaries
are a key language feature that proofs to be useful for parsing file’s content. As shown in [15] doesn’t perform the best
compared to a comparable implementation in other languages. Nevertheless, a high performance isn’t required from
raml2agl since the code generation isn’t being done online nor frequently.

9.3 RAML Parser vs pyraml-parser/ramlifications

Even though there are reference implementations of a RAML parser called, pyraml-parser and
ramlifications, it was decided to not use them for now since they only support up to RAML 0.8, whereas
raml2agl plans to support RAML 1.0.

This fact adds a little overhead to the development and also includes some risks (discussed in PyRAML/ramlifications
Adoption). Nevertheless, the RAML Parser didn’t represent much effort to develop and generates the expected behav-
ior efficiently.

35

Model Driven Development for Kuksa Applications Documentation, Release 0.0.1

Since ramlifications plans to support RAML 1.0 [36], it might be a good idea to integrate it into the RAML
Parser once it’s supported.

9.4 RPC over Web Socket Communication

Web Socket communication is a powerful communication and design pattern. For instance, Web Socket Communi-
cation enables bi-directional and asynchronous communication. Whereas, RPC is a unidirectional and synchronous
communication.

Therefore, implementing an RPC on top of Web Socket Communication means losing some communication capabili-
ties. This design decision is probably the most important done regarding the MDD approach.

Even when the RPC communication model isn’t desired, raml2agl can still be used. For instance, it can still be
used to automatically generate the AGL Service and the Service Class, since the RPC model is only implemented in
APP Class and WebSocketApi.

36 Chapter 9. Design Decisions

CHAPTER 10

Quality Requirements

In this chapter, the quality requirement presented in Quality Requirements are evaluated. Besides, other quality aspects
are also introduced an evaluated.

raml2agl tool fulfills Transparency (REQ_001) by maintaining a clear mapping between the Service Class’s and
the APP Class’s methods. Hence creating as well an Object Oriented interface that abstracts the Unix Web Socket
communication and thus fulfilling Abstraction (REQ_002) as well.

The adoption of RAML as the interface modeling language speaks for the fulfillment Standardization (REQ_003).
Moreover, raml2agl uses broadly adopted tools, such as Jinja2. Also, raml2agl follows standard coding styles
such as the Kernel’s coding style and PEP8. Both broadly adopted tools and the use of standard coding styles, also
contribute towards Standardization (REQ_003) fulfillment.

raml2agl allows the user to set the output directories and decide what components to generate. Additionally,
by supporting RAML raml2agl enables the user to generate a wide variety of interfaces. These are two already-
implemented customization mechanisms for the proposed MDD approach. Therefore fulfilling Flexibility (REQ_004).

As for Testability and Debugability (REQ_005), generates intermediate probing points with well-defined interfaces
which allows the user to develop unit testing for the system’s main components. For instance, the AGL service
developer can create unit testing for the Service Class, which would test the actual AGL Service’s purpose. Similarly,
the AGL Service developer could interact with the RESTful interface directly using tools like Postman [12]. This will
test a different aspect of the components interaction, which is the marshaling and unmarshaling of the JSON in the
AGL Service side, as well as the mapping with the Service Class’s methods. In the APP Service side, a similar testing
can be done to verify the marshaling and unmarshaling of the methods’ parameters into JSON.

By defining a standard interface also enables a decoupled development process, where AGL Service and AGL Ap-
plication can be developed in parallel. Moreover, mocking [10] mechanisms can be easily implemented using the
interface’s definition. For instance, the APP Service interface could be mocked using Google Test [24], thus enabling
testing at AGL application level without the need of running in the actual system, which at the same time enables
faster development.

Interestingly, the mocking and components unit tests can be also automatically generated out of the RAML model, also
contributing towards Flexibility (REQ_004). Moreover, by having a deterministic mapping between the RAML model
and the components’ behavior correctness can be verified once and guaranteed for everyone [33], thus minimizing the
testing effort. Note that correct memory management is also considered part of the code’s behavior correctness as it’s
one of the system’s constraints (TC3) as specified in Constraints. For instance, all the developed unit testing could

37

Model Driven Development for Kuksa Applications Documentation, Release 0.0.1

be tested under memory management checking tools such as valgrind to validate its correctness. By doing so, the
memory management correctness is verified without any more testing effort since the same unit tests are run, but on
top of valgrind. In fact, this was done while testing raml2agl’s behavior.

38 Chapter 10. Quality Requirements

CHAPTER 11

Risks and Technical Debts

Each of the subsections discusses a risk and technical debt aspect.

11.1 PyRAML/ramlifications Adoption

As mentioned before, pyraml nor ramlifications weren’t adopted to develop raml2agl. This leaves an
important technical debt since the compliance with the RAML standard isn’t verified in the implemented RAML
parser. Meaning, that some modeling language syntax error in an input RAML model wouldn’t be caught.

Moreover, the by the time of writing this document, the RAML parser doesn’t support all RAML 1.0 features but are
being increasingly supported. Thus, creating a gap between the RAML 1.0 modeling features and the raml2agl
features. Nevertheless, the most important RAML 1.0 modeling features are supported in raml2agl. Please review
[22] for an updated list of RAML 1.0 supported features.

11.2 RPC Limitations

The use of an RPC communication model on top of Web Socket represents a risk and technical debt since some
applications might work better on top of the raw Web Socket communication. Nevertheless, raml2agl can still be
used for the client side automatically code generation as mentioned in RPC over Web Socket Communication.

39

Model Driven Development for Kuksa Applications Documentation, Release 0.0.1

40 Chapter 11. Risks and Technical Debts

CHAPTER 12

Glossary

RESTful API An API that uses GET, PUT, POST, and DELETE HTTP requests to expose the functionalities.

RAML RESTful API Modeling Language

Web Socket A networks communication protocol, over TCP, located at layer 7 of the OSI model.

RPC Remote Procedure Call is when a section of a program’s code is executed in a different address space or system.

MDD Model Driven Development

41

Model Driven Development for Kuksa Applications Documentation, Release 0.0.1

42 Chapter 12. Glossary

Bibliography

[1] Api blueprint. URL: https://apiblueprint.org/.

[2] App template. URL: https://gerrit.automotivelinux.org/gerrit/p/apps/app-templates.git.

[3] Apache ant. URL: http://ant.apache.org/.

[4] Build, test and package your software with cmake. URL: https://cmake.org/.

[5] Gnu bash. URL: https://www.gnu.org/software/bash/.

[6] Gradle. URL: https://gradle.org/.

[7] Gradle - wikipedia. URL: https://en.wikipedia.org/wiki/Gradle.

[8] Linux kernel coding style. URL: https://www.kernel.org/doc/html/v4.10/process/coding-style.html.

[9] Mqtt. URL: http://mqtt.org/.

[10] Mock object. URL: https://en.wikipedia.org/wiki/Mock_object.

[11] PEP 8 – Style Guide for Python Code. URL: https://www.python.org/dev/peps/pep-0008/.

[12] Postman. URL: https://www.getpostman.com/.

[13] Pyraml. URL: https://github.com/an2deg/pyraml-parser.

[14] Python. URL: https://www.python.org/.

[15] Python 3 programs versus c++ g++. URL: https://benchmarksgame.alioth.debian.org/u64q/compare.php?lang=
python3&lang2=gpp.

[16] Raml org. URL: https://raml.org/.

[17] Raml projects. URL: https://raml.org/projects.

[18] RAML Version 1.0: RESTful API Modeling Language. URL: https://github.com/raml-org/raml-spec/blob/master/
versions/raml-10/raml-10.md/.

[19] The openapi specification. URL: https://github.com/OAI/OpenAPI-Specification.

[20] Welcome to apache maven. URL: https://maven.apache.org/.

[21] Repo. URL: https://gerrit.googlesource.com/git-repo.

[22] Pedro Cuadra. Raml to agl. URL: https://github.com/pjcuadra/raml2agl.

43

https://apiblueprint.org/
https://gerrit.automotivelinux.org/gerrit/p/apps/app-templates.git
http://ant.apache.org/
https://cmake.org/
https://www.gnu.org/software/bash/
https://gradle.org/
https://en.wikipedia.org/wiki/Gradle
https://www.kernel.org/doc/html/v4.10/process/coding-style.html
http://mqtt.org/
https://en.wikipedia.org/wiki/Mock_object
https://www.python.org/dev/peps/pep-0008/
https://www.getpostman.com/
https://github.com/an2deg/pyraml-parser
https://www.python.org/
https://benchmarksgame.alioth.debian.org/u64q/compare.php?lang=python3&lang2=gpp
https://benchmarksgame.alioth.debian.org/u64q/compare.php?lang=python3&lang2=gpp
https://raml.org/
https://raml.org/projects
https://github.com/raml-org/raml-spec/blob/master/versions/raml-10/raml-10.md/
https://github.com/raml-org/raml-spec/blob/master/versions/raml-10/raml-10.md/
https://github.com/OAI/OpenAPI-Specification
https://maven.apache.org/
https://gerrit.googlesource.com/git-repo
https://github.com/pjcuadra/raml2agl

Model Driven Development for Kuksa Applications Documentation, Release 0.0.1

[23] Pedro Cuadra. Websocketapi.cpp. URL: https://github.com/pjcuadra/raml2agl/blob/master/src/templates/types/
app/WebSocketApi.cpp.

[24] Google. Googletest. URL: https://github.com/google/googletest.

[25] Google. Protobuffers. URL: https://developers.google.com/protocol-buffers/.

[26] Automotive Grade Linux. Apis & services. URL: http://docs.automotivelinux.org/docs/apis_services/en/dev/.

[27] Automotive Grade Linux. About. URL: https://www.automotivelinux.org/about.

[28] Automotive Grade Linux. Architecture guide. URL: http://docs.automotivelinux.org/docs/architecture/en/dev/.

[29] Automotive Grade Linux. Bindings reference. URL: http://docs.automotivelinux.org/docs/apis_services/en/dev/
reference/af-binder/afb-binding-references.html.

[30] Automotive Grade Linux. Developer guides. URL: http://docs.automotivelinux.org/docs/devguides/en/dev/.

[31] Automotive Grade Linux. The application framework daemons. URL: http://docs.automotivelinux.org/docs/
apis_services/en/dev/reference/af-main/1-afm-daemons.html.

[32] Automotive Grade Linux. Automotive grade linux requirements specifications. May 2015. URL: http://docs.
automotivelinux.org/docs/architecture/en/dev/reference/AGL_Specifications/agl_spec_v1.0_final.pdf.

[33] Collin O’Halloran. Model base code verification. Formal Methods and Software Engineering: 5th International
Conference on Formal Engineering Methods, ICFEM 2003, Singapore, November 5-7, 2003, Proceedings, 2003.

[34] Raspberrypi.org. RASPBERRY PI 3 MODEL B. Raspberrypi.org. URL: https://www.raspberrypi.org/products/
raspberry-pi-3-model-b/.

[35] Armin Ronacher. Welcome to Jinja2. URL: http://jinja.pocoo.org/docs/2.10/.

[36] Spotify. Ramlfications. URL: https://github.com/spotify/ramlfications.

44 Bibliography

https://github.com/pjcuadra/raml2agl/blob/master/src/templates/types/app/WebSocketApi.cpp
https://github.com/pjcuadra/raml2agl/blob/master/src/templates/types/app/WebSocketApi.cpp
https://github.com/google/googletest
https://developers.google.com/protocol-buffers/
http://docs.automotivelinux.org/docs/apis_services/en/dev/
https://www.automotivelinux.org/about
http://docs.automotivelinux.org/docs/architecture/en/dev/
http://docs.automotivelinux.org/docs/apis_services/en/dev/reference/af-binder/afb-binding-references.html
http://docs.automotivelinux.org/docs/apis_services/en/dev/reference/af-binder/afb-binding-references.html
http://docs.automotivelinux.org/docs/devguides/en/dev/
http://docs.automotivelinux.org/docs/apis_services/en/dev/reference/af-main/1-afm-daemons.html
http://docs.automotivelinux.org/docs/apis_services/en/dev/reference/af-main/1-afm-daemons.html
http://docs.automotivelinux.org/docs/architecture/en/dev/reference/AGL_Specifications/agl_spec_v1.0_final.pdf
http://docs.automotivelinux.org/docs/architecture/en/dev/reference/AGL_Specifications/agl_spec_v1.0_final.pdf
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
http://jinja.pocoo.org/docs/2.10/
https://github.com/spotify/ramlfications

Index

M
MDD, 41

R
RAML, 41
RESTful API, 41
RPC, 41

W
Web Socket, 41
WebSocketApi (C++ class), 17
WebSocketApi::~WebSocketApi (C++ function), 17
WebSocketApi::api_name (C++ member), 18
WebSocketApi::callcount (C++ member), 19
WebSocketApi::connected (C++ member), 18
WebSocketApi::curr_reply (C++ member), 20
WebSocketApi::dec_callcount (C++ function), 18
WebSocketApi::emit (C++ function), 17
WebSocketApi::exonrep (C++ member), 19
WebSocketApi::loop (C++ member), 19
WebSocketApi::on_wsj1_call (C++ function), 19
WebSocketApi::on_wsj1_event (C++ function), 19
WebSocketApi::on_wsj1_hangup (C++ function), 18
WebSocketApi::on_wsj1_reply (C++ function), 19
WebSocketApi::reply (C++ member), 19
WebSocketApi::uri (C++ member), 18
WebSocketApi::WebSocketApi (C++ function), 17
WebSocketApi::wsj1 (C++ member), 19
WebSocketApi::wsj1_call (C++ function), 19
WebSocketApi::wsj1_itf (C++ member), 19

45

	Introduction and Goals
	Requirements Overview
	Quality Requirements

	Constraints
	Technical Constraints
	Conventions

	System Scope and Context
	Solution Strategy
	Building Block View
	Service Class
	WebSocketApi
	APP Class
	AGL Service
	RAML Parser
	raml2agl main

	Runtime View
	RAML2AGL Generation
	AGL Service Start
	Web Socket Communication

	Deployment View
	Cross-cutting Concepts
	RPC over Web Socket

	Design Decisions
	RESTful Modeling Language Selection
	Python for raml2agl
	RAML Parser vs pyraml-parser/ramlifications
	RPC over Web Socket Communication

	Quality Requirements
	Risks and Technical Debts
	PyRAML/ramlifications Adoption
	RPC Limitations

	Glossary
	Bibliography

